钽电容烧毁(钽电容爆炸)与纹波电流之间的关系探讨
经常听到工程师们抱怨,钽电容烧毁啦、钽电容爆炸啦!
发生钽电容烧坏(没有明显的外伤,但是已经短路没有容量了)甚至钽电容烧毁(有明显的外伤,钽电容外壳被烧焦,呈碳黑色)的原因非常复杂,今天我们仅从钽电容的纹波电流这个参数来进行分析。
贴片钽电容内部产生的热量来自于工作电源的交流成分的功耗,纹波电流等于I2R。RMS值目前在一个给定的的频率,和R是在同一ESR频率与一个额外的贡献。因为漏电流的存在,钽电解电容外表面的热量将被转移传导,至于它是如何有效转移到另一点的,这依赖于PCB板的热管理设计。第2.1节中给出的功耗额定值(第114页)是基于自由空气计算。如果使用有效的散热和/或强制冷却,这些评级可走近。 (比热有关的必要的能量加热到指定温度的物质定义的卷)。在实践中,在没有特定的高密度组装热管理,功耗要求给10 ° C以上环境温度上升可能会高达至少10倍。在这种情况下,实际的电容温度应建立(通过热电偶探头或红外线扫描仪),如果它被认为是要超过这个限制,它可能必须指定一个低ESR的一部分或更高额定电压。详情请联络应用工程,或联系AVX技术出版物,题为“热管理表面贴装的钽电容器由伊恩梳士巴利“。
以下是对钽电容烧坏、钽电容烧毁原因分析的英文原版的摘录,英文水平比较好的工程师们可以直接看英文就得了。
The heat generated inside a tantalum capacitor in a.c.operation comes from the power dissipation due to ripple current. It is equal to I2R, where I is the rms value of the current at a given frequency, and R is the ESR at the same frequency with an additional contribution due to the leakage current. The heat will be transferred from the outer surface by conduction. How efficiently it is transferred from this point is dependent on the thermal management of the board. The power dissipation ratings given in Section 2.1 (page 114) are based on free-air calculations. These ratings can be approached if efficient heat sinking and/or forced cooling
is used. In practice, in a high density assembly with no specific thermal management, the power dissipation required to give a 10°C rise above ambient may be up to a factor of 10 less. In these cases, the actual capacitor temperature shouldbe established (either by thermocouple probe or infra-redscanner) and if it is seen to be above this limit it maybe necessary to specify a lower ESR part or a highervoltage rating.Please contact application engineering for details or contactthe AVX technical publication entitled “Thermal Managementof Surface Mounted Tantalum Capacitors” by Ian Salisbury.